skip to main content


Search for: All records

Creators/Authors contains: "Mount, Stephen M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Rosaceae is a large plant family consisting of many economically important fruit crops including peach, apple, pear, strawberry, raspberry, plum, and others. Investigations into their growth and development will promote both basic understanding and progress toward increasing fruit yield and quality. With the ever-increasing high-throughput sequencing data of Rosaceae, comparative studies are hindered by inconsistency of sample collection with regard to tissue, stage, growth conditions, and by vastly different handling of the data. Therefore, databases that enable easy access and effective utilization of directly comparable transcript data are highly desirable. Here, we describe a database for comparative analysis, ROsaceae Fruit Transcriptome database (ROFT), based on RNA-seq data generated from the same laboratory using similarly dissected and staged fruit tissues of four important Rosaceae fruit crops: apple, peach, strawberry, and red raspberry. Hence, the database is unique in allowing easy and robust comparisons among fruit gene expression across the four species. ROFT enables researchers to query orthologous genes and their expression patterns during different fruit developmental stages in the four species, identify tissue-specific and tissue-/stage-specific genes, visualize and compare ortholog expression in different fruit types, explore consensus co-expression networks, and download different data types. The database provides users access to vast amounts of RNA-seq data across the four economically important fruits, enables investigations of fruit type specification and evolution, and facilitates the selection of genes with critical roles in fruit development for further studies.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Abstract CRISPR-Cas12a is a promising genome editing system for targeting AT-rich genomic regions. Comprehensive genome engineering requires simultaneous targeting of multiple genes at defined locations. Here, to expand the targeting scope of Cas12a, we screen nine Cas12a orthologs that have not been demonstrated in plants, and identify six, ErCas12a, Lb5Cas12a, BsCas12a, Mb2Cas12a, TsCas12a and MbCas12a, that possess high editing activity in rice. Among them, Mb2Cas12a stands out with high editing efficiency and tolerance to low temperature. An engineered Mb2Cas12a-RVRR variant enables editing with more relaxed PAM requirements in rice, yielding two times higher genome coverage than the wild type SpCas9. To enable large-scale genome engineering, we compare 12 multiplexed Cas12a systems and identify a potent system that exhibits nearly 100% biallelic editing efficiency with the ability to target as many as 16 sites in rice. This is the highest level of multiplex edits in plants to date using Cas12a. Two compact single transcript unit CRISPR-Cas12a interference systems are also developed for multi-gene repression in rice and Arabidopsis . This study greatly expands the targeting scope of Cas12a for crop genome engineering. 
    more » « less
  4. SUMMARY

    Fruits represent key evolutionary innovations in angiosperms and exhibit diverse types adapted for seed dissemination. However, the mechanisms that underlie fruit type diversity are not understood. The Rosaceae family comprises many different fruit types, including ‘pome’ and ‘drupe’ fruits, and hence is an excellent family for investigating the genetic basis of fruit type specification. Using comparative transcriptomics, we investigated the molecular events that correlate with pome (apple) and drupe (peach) fleshy fruit development, focusing on the earliest stages of fruit initiation. We identifiedPIandTM6, MADS box genes whose expression negatively correlates with fruit flesh‐forming tissues irrespective of fruit type. In addition, the MADS box geneFBP9is expressed in fruit‐forming tissues in both species, and was lost multiple times in the genomes of dry‐fruit‐forming eudicots including Arabidopsis. Network analysis reveals co‐expression betweenFBP9and photosynthesis genes in both apple and peach, suggesting thatFBP9and photosynthesis may both promote fleshy fruit development. The large transcriptomic datasets at the earliest stages of pome and drupe fruit development provide rich resources for comparative studies, and the work provides important insights into fruit‐type specification.

     
    more » « less